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Abstract

A first-order shear deformable plate theory-based method is developed to calculate the strain energy release rate
and stress intensity factor of a non-homogeneous delaminated composite plate under a general three-dimensional (3-
D) loading condition. By modeling the delaminated plate as two shear deformable sub-laminates on either side of the
delaminated plane, the strain energy release rate is expressed in terms of three concentrated forces at the crack tip
and their corresponding compliance coefficients. The simple expression of strain energy release rate makes the mode
decomposition under complicated loading situation possible with the aid of two supplementary continuum analyses.
To illustrate the present method, a plain strain delamination problem of laminates is examined, and the closed-form
expressions of strain energy release rate and stress intensity factor are obtained. It is found that the available
solutions, such as the ones based on the classical plate theory, can be recovered from the present solutions by simply
neglecting the transverse shear force. The relationship between the global and local decompositions is further
established, and the accuracy of the present solutions is examined by comparing with numerical results of boundary
element method. With inclusion of transverse shear deformation in the formulation, more accurate and explicit
predictions of the strain energy release rate and stress intensity factor of delaminated composite plate are achieved
by the present method, especially when a laminate has a relatively low transverse shear modulus or moderate
thickness.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Interlaminar delamination is one of most common failure modes in composites laminates. Fracture
mechanics principles have been widely employed to assess this type of failure mode, where the strain energy
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release rate (SERR) G or stress intensity factor (SIF) K is evaluated and compared with the critical mode-
mix-dependent SERR G, or SIF K. of the interface determined from experiments. The interface crack is
likely to propagate if G or K reaches G. or K... This approach was adopted by Wang and Crossman (1980),
Wang (1982), O’Brien (1982, 1990), and Davidson et al. (2000a). By noting the mode mix dependence of G.
and K, it is often necessary to extract the mode mix of G and K at the crack tip in order to successfully
predict the growth of crack.

Extensive studies have been conducted on predictions of both the SERR and SIF of elastic layered
structures (Suo and Hutchinson, 1990; Schapery and Davidson, 1990; Davidson et al., 1995; Sheinman
and Kardomateas, 1997). Finite elements have been frequently used to calculate the SIF (K) or SERR
(G) and mode mix of the interface crack for general conditions (Matos et al., 1989; Venkatesha et al.,
1996; Beuth, 1996; Sun and Qian, 1997; Qian and Sun, 1998; Nillsson et al., 2001). When the beam/plate-
type layered structures are encountered, however, the application of finite elements is not efficient since
the K-dominant zone is relatively small, and very fine mesh near the crack tip is required to obtain
sufficiently accurate results. In such a case, a more efficient alternative is to take the advantage of
lamination plate theory to calculate the SERR and obtain the SIF by solving supplemental continuum
problem. This method is remarkably simple, and therefore, computationally efficient, as proposed and
illustrated by Schapery and Davidson (1990) and Suo and Hutchinson (1990). In the classical works of
Schapery and Davidson (1990), Suo and Hutchinson (1990), and Davidson et al. (1995), the SERR of an
interface crack between two elastic layers was calculated by a classical beam or plate theory and ex-
pressed in terms of two independent loading parameters P and M (Suo and Hutchinson, 1990) or
concentrated force and moment at the crack tip (Schapery and Davidson, 1990); but the mode mix was
retrieved through an auxiliary continuum analysis. This method, commonly known as crack tip element
(CTE) analysis (Davidson et al., 1995), was successfully used in the interface fracture analysis in two-
dimensional (2-D) situation (Davidson and Sundararaman, 1996). However, the shear deformation in the
cracked and uncracked regions is not considered in the existing models since the classical beam or plate
theory was basically used. As a result, the SERR is always underestimated by this method (Davidson
and Sundararaman, 1996). This limitation is also demonstrated in the studies to extend the 2-D CTE to
3-D situation where the out-of-plane shear force is included (Hu, 1995; Yang et al., 2000). Davidson
et al. (2000b) found that the total and out-of-plane shear SERRs calculated by the classical plate theory
based 3-D CTE is erroneous. As a modification, they introduced shear deformation kinematics to cal-
culate plate forces and moments near the delamination tip and then substituted the resulting loading
parameters into the CTE model to calculate the SERR. By this way, the errors due to shear deformation
were reduced, and a good agreement with the predictions by 3-D finite element analysis was reached.
However, the inconsistence between the SERR predictions based on the shear deformable and classical
plate theory was introduced in their model. Sanker and co-workers (Sankar and Sonik, 1995; Park and
Sanker, 2002) took a similar approach to obtain the SERR; the first-order shear deformation theory was
used in their model, and the point-wise SERR was expressed in terms of jumps of three forces and two
moments across the delamination front. Although the transverse shear deformation was included in the
formulation, the expression of the SERR is relatively complicated, and it is difficult to retrieve the mode
mix.

In this study, we aim to establish a simple method to calculate the SERR and SIF of a delamination in
the shear deformable composite laminates. The formulation incorporates the shear deformation of lami-
nates and can be used to predict the delamination in the laminated composites. An explicit and more
accurate expression of the SERR is obtained first by using the first-order shear deformation laminate
theory. Then a method to decompose the mode mix of SIF is proposed. To illustrate the present method, a
plain strain delamination problem is studied, and a closed-form solution of the SERR and SIF is obtained.
The explicit solution obtained in this study is then compared with the available classical solutions in the
literature and with the numerical results of boundary element method.
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2. Strain energy release rate under general loading conditions

Consider a small piece at the delamination tip of Fig. 1, where a delamination s lies along the straight
interface of the top plate ““1”” and bottom plate ““2”” with thickness of /#; and #,, respectively. Generic loads
are applied, as already determined by a global beam or plate analysis.

In the conventional CTE analysis (Davidson et al., 1995; Yang et al., 2000), this problem is modeled as
three classical plates: the top plate in the cracked region, the bottom plate in the cracked region, and a
single plate of the whole uncracked region. As shown in Bruno and Greco (2001), it is not appropriate to
model the undelaminated portion of the laminate using a single plate element in which the actual shear
deformation could not be captured. Therefore, in this study, the uncracked region is modeled as two plates
as the ones in the cracked region: top plate “1” and bottom plate “2”°, instead of only one single plate.
These two plates are perfectly bonded along their interface to keep the continuity of displacement; while the
two plates in cracked region deform separately. The first-order shear deformation theory or Reissner—
Mindlin plate theory is used in this study to account for the shear deformation, and the top and bottom
plates can be in laminate configuration (i.e., sub-laminates 1 and 2, respectively).

2.1. First-order shear deformation theory of laminate plate

According to Reissner—-Mindlin plate theory, the deformations of a two-plate system are given as:

(]i(xayvz) :ui(x?y)+z¢xi(xvy) (l)
I/;(x,y,z) = Ui(xvy) +Z(lsyi(xvy) (2)
VV,-(X,)/,Z) = Wi(xay) (3)

where the subscript i = 1 or 2, represents the plate 1 or 2 in Fig. 1, respectively.
The strains in these two plates are given as:
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Fig. 1. Delamination in composite laminate. (a) A laminated plate under general loadings and (b) element at the delamination tip.
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The constitutive equation of a laminated plate is written in the conventional way (Barbero, 1998) as:
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The global equilibrium conditions are simply given as (see Figs. 1(b) and 2):
Nyig + Nyoo = Ny + N = Nyr,y Nyto + Nypg = Nyi +Nyp = Nyr (7)
010 + O = Q1 + Q2 = Our, Oyio+ 020 =0y + 02 = Oyr (8)
M1 + Mizo + Nxo hl erhz + Ourx = My + Mo + Ny d erhz T 9)
M,10 + Miy20 + Nyyio I ; ha_ w1 T Mo + Ny, I erhz T (10)

It has been shown that three concentrated crack tip forces (i.e., Ny, O, and N,,.) coexisting at the crack
tip (Chatterjee and Ramnath, 1988) are resulted from the stress singularity at the delaminating tip (Fig. 2).
Then the equilibrium equations at the crack tip can be written as:

leO = 7Nxc +le |x:0 (11)

nylO = _N‘cyc +ny1 x=0 (12)

QxlO = _Qxc + Qxl |x:0 (13)
h

MxlO = _lNrc + Mxl |x:0 (14)

2
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Fig. 2. Stresses and forces at crack tip.
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2.2. Determination of SERRs
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M,; and Q,; are continuous at the crack tip (Sankar and Sonik, 1995).
As a result, the deformations at the crack tip are continuous; however, their gradients are not conti-
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Fig. 3. Calculation of the strain energy release rate by Irwin method.
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(15)

According to Irwin method (Fig. 3), the strain energy release rates (SERRs) at the crack tip can be
computed as:

(16)

(17)
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1 1 /
G = lim o /0 o (1)00(4 —x)dx = lim Sz, (£)(60(0) — 5¢/(0)0)4 (18)

where 4 is a virtual crack propagation length; o, (x), 7.(x) and ,,(x) are the surface tractions; x and { are the
distances from the crack edge (Fig. 3); and 0 < { < 4. Be aware that:

ou(0) =0, ov(0) =0, ow(0) =0
Eqgs. (16)—(18) can be rewritten as:
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At the uncracked part of the laminate (x > 0), the displacement continuity along the interface of two sub-
laminates requires:
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Substituting the first equation in the constitutive law of Eq. (6) into Egs. (25) and (26) and considering the
global equilibrium conditions Egs. (7)—(10), Egs. (25) and (26) become:
Ri1Nyio + Ri2Nyig + RisNyyio + O1iMiio + Q1aMy0 + O16My10 + Riro
= —(Rii(Ny — Nxwo) + Riz(Nyi — Nyio) + Rig(Neyt — Ngio) + Ot (M — Myo) + Q12(My1 — M,y10)
+ O16(Myy1 — Myyro) + Rir)l,—y (27)
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Ri6Nx10 + RasNy1o + ResNryro + O16Mii0 + Q26My10 + QM0 + Rero
= —(Ri6(Ny1 — Nx1o) + Rag(Ny1 — Nyio) + Re6(Ney1 — Ngio) + Q16(Myr — Miio) + Qa6(My — M)
+ Qo6 (M1 — Myy10) + Rer)|,—o (28)

where the coefficients R;; and Q;; are given in Appendix A.
Recalling the global equilibrium conditions of Egs. (7)—(10), we find that:

Riro = Rirl,_y, Rero = Rerl,—_g (29)
Noting the crack tip equilibrium conditions of Egs. (11)—(15), we have
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where three compliance coefficients are given by:
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According to the second equation in the constitutive law of Eq. (6), we have

o(w; —w
% = —(da = da)limp- + (agls) + afé))leo + (agls) + a<525))QX10 (35)
x=0—
Note that
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Considering the continuity of O, across the delamination tip and combining Eqgs. (35) and (36) with
Eq. (13), we obtain:

1
Gy = §5QQ§C (37)

where J, is the out-of-plane shear compliance coefficient of the two-plate system under in-plane open
loading:

0p = (aé? + aé?) (38)
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Similarly, the total SERR at the crack tip can be written as:
1
G= 3 (511Nx20 + 2016NyNyye + 566Nx2yc + 5QQ)2“,) (39)

Eq. (39) indicates that no matter how many loadings are involved, the SERR can be expressed in terms of
only three independent loading parameters N,., O, and N,,.. Sankar and Sonik (1995) made a similar effort
to express the SERR in terms of resultant force jumps at the crack tip where five forces (three concentrated
forces and two concentrated moments) were used. Therefore, their expression is more complicated and
makes the mode decomposition a very difficult task.

By computing the three concentrated crack tip forces Ny, O.., and N,,., the SERR can be simply evaluated
as illustrated in Eq. (39). Revisiting Eqs. (27) and (28), we find that N,. and N,, can be determined by:

(Nxc ) B (Rll —40n Ry —hlem)_l

Nye)  \Rig— B0 Res — 2O
Ri1Nyi0 + RiaNyig + RisNyio + O11iMyig + Q12My10 + Or6Miy10
<R16Nx10 + Ry6N,10 + ReeNyyio + Qr6Mii0 + O6My10 + Q66Mry10>

while for determination of QO.., further analysis is needed, i.e., by solving a double plate system. For a
simple 2-D problem, it can be analytically obtained as shown in Appendix B (see Eq. (B.26)).

(40)

2.3. Mode mix

It is a difficult but necessary task to extract mode mix of SERR in interface fracture mechanics due to its
mode-mix-dependence. Two approaches of mode decomposition are commonly employed in the literature:
the global approach based on the beam/plate theory and the local approach based on the local singular field
close to the crack tip. There are conflicting experimental evidences in which approach is better to describe
mixed mode fracture process. Tests on carbon/epoxy laminate composites showed that the global mode
decomposition is more appropriate (Charalambides et al., 1992; Kinloch et al., 1993). On the other hand,
the local approach was found to be well-adapted to analyze the bi-material interface fracture (Liechti and
Chai, 1991; Akisanya and Fleck, 1992). To predict the delamination growth in unidirectional and multi-
directional composites materials, Davidson et al. (2000a) found that the non-singular field (NSF) mode mix
decomposition had the best accuracy. The NSF mode decomposition was developed by Davidson et al.
(1997) based on the assumption that the parameters in plate theory could be best used to characterize mode
mix. This method decomposed the mode mix in the same fashion as the local decomposition, however, with
a different value of mode mix parameter Q obtained by the experiments. In this study, both the global and
local approaches are considered and explored.

As aforementioned, three separated modes of the SERR are already written in Egs. (30), (31) and (37),
and therefore, these three equations provide the partition method in a general 3-D case. It has been recently
shown by Wang (2003) that the SERR expressions in Egs. (30), (31) and (37) are in a limit situation for a
cohesive fracture of two plates bonded by a “thin” layer of adhesive as the thickness of adhesive layer
approaches to infinitesimal. Therefore, this mode decomposition simulates the presence of a perceived thin
adhesive resin layer embedding in the laminas. This decomposition is called “global decomposition” in this
paper since only the plate theory is used and the local oscillatory stress and displacement fields are ignored
(Wang, 2003). However, this global method is different from the global mode mix decomposition method by
Williams (1988) and the non-smooth model by Point and Sacco (1996). Williams (1988) developed the global
decomposition based on classical beam theory and three simple assumptions, which were only reasonable for
the symmetric delamination. As a result, Williams’ method provided roughly the approximate solutions (Suo
and Hutchinson, 1990; Davidson et al., 1995) and there was no obvious physical meaning of the method for
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asymmetric delamination. On the other hand, the non-smooth model of Point and Sacco (1996) considered
the fiber elongation along the interface, which was physically meaningful for asymmetric delamination;
however, the difficulty still existed due to the presence of three crack tip forces (peel force V', shear force H
and moment C in their notation) from the classical beam theory, and the concentrated moment C at the
crack tip could contribute to all the fracture modes. Therefore, the error could be introduced by their
assumption on the contribution of C to the fracture mode. While in the present method, there is no con-
centrated moment at the crack tip, which therefore makes the mode decomposition very straightforward.
Point and Sacco (1996) also proposed a regularized laminate model which presented the SERRs of mode I
and IT as a function of interface property since a linear elastic interface model was used. Their approach was
improved by Bruno and Greco (2001), in which the transverse shear deformation was incorporated.

This study presents a closed-form solution of the limit situation when the interface layer is infinitesimal
in a 3-D extension. In the present global method, the first-order shear deformable plate kinematics is
employed, and the actual displacement at the crack tip is much more complicated. Therefore, the accuracy
of the present model depends on the accuracy of simulating delamination configuration by the plate model.
For most beam type fracture specimens, such as double cantilever beam (DCB), end-notched flexure
(ENF), and mixed mode bending (MMB) specimens, when the crack length is sufficiently long, this model
can provide excellent results. The accuracy can be further enhanced by a more refined plate theory or multi-
layer plate formulation (Zou et al., 2001).

The strain energy release rate can be related to the modulus of stress intensity factor (Yang et al., 2000)
as:

1 d 2 W%l 2 W%z 2 W1 W3n
=7l Kt dn—")K dz3 ——2 | Ky +2( d KK, 41
4 Loshz e + | i 4, ) + | d3 2, ) K + 13+ ™ K (41)

where d;, d», ds3, diz, wy; and wy, are the elements of bi-material matrix (Hwu, 1993). From linearity
consideration, the stress intensity factors can be determined by the crack tip force as:

K ki ki ki Ore
Ky | = |k ko ks Nye (42)
Km kst ko ks Nye

where k;; are the coefficients need to be determined. Substituting Eq. (42) into Eq. (41) and then comparing
with Eq. (40), six coefficients of k;; in terms of the remaining three can be obtained. Finite element method is
generally used to determine the remaining coefficients (Davidson et al., 1995; Yang et al., 2000).

3. Application: modified 2-D crack tip element

As an application example of the present method, a plane strain delamination problem of Fig. 4 is
analyzed, in which the SERR and SIF have been expressed in terms of concentrated force N. and moment
M. at the crack tip (the same notation given in Davidson et al., 1995). Essentially the same results have also

Az
0 Au
Mg
(77 ! hy
Nio :_;i S e v
>
Nzg Mzo > &2 2 hs
Ei v
Q2 L
Delamination

Fig. 4. 2-D crack tip element.
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been given by Sheinman and Kardomateas (1997), but in the same style as in Suo and Hutchinson (1990).
Both of these two solutions are based on the classical plate theory, and therefore, the transverse shear
deformation is not accounted for. As shown in the study of Bruno and Greco (2001), the transverse shear
plays a significant role in the SERR and therefore is considered in this study (Fig. 4).

3.1. Strain energy release rate

The normal concentrated force at the crack tip in Eq. (40) can be simplified as:

 2(0nM + RiN)

N, = 43
hQn — 2Ry, (43)
The transverse (peeling) concentrated force is solved (see Appendix B) as:
mN
Qxc__Q_k<M+12) (44)

where M, N and Q are defined in Eq. (B.27). Therefore, the SERRs can be written in the individual mode of
global sense as:

1 (OuM + R N)?
Gy ==y N2 == T 45
T e h1Qn — 2Ry, (45)
G =15 Q2—5—Q O+k m M 2 (46)
1ot 2
and,
1 1 1
G= 55“1\@ + E(SQQ; =3 (CyN? + CoQ* + CyM?* + CywMN + CyoNQ + CyoMQ) (47)
where,
hy + hy)?d?
Cy=afl +af} + (n + o} + ALl u—al 4
oy = 2(B) +B) + O + )}, Cug = (WY + 0 Yk, Cug = 2(n + 4 Yk

The expression of SERR in Eq. (47) is the same as the one obtained by Schapery and Davidson (1990)
and Sheinman and Kardomateas (1997), except that three new terms associated with O, which indicate the
contribution of transverse shear to the total SERR, are introduced. In Eq. (47), CpQ?/2 is due to the
transverse shear deformation in the cracked region; while CyoNQ/2 and CyoMQ/2 arise from the transverse
shear deformation in the uncracked region. The closed-form solutions obtained by Bruno and Greco (2001)
for geometrically symmetric plates can be easily derived using the present formula of Eq. (47) by substi-
tuting the specific loading and laminate properties.

3.2. Mode decomposition and stress intensity factor

The global decomposition of mode mix is given in Egs. (45) and (46). In this section, the local
decomposition of fracture mode is studied. Following the same approach as in Sheinman and Kardomateas
(1997), the top and bottom sub-laminates are replaced by equivalent orthotropic plates with their principle
material axes aligned with the reference coordinate axes.
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The strain energy release rate can be related to the modulus of stress intensity factor (Suo, 1990) as:

Hy 2
=——I|K 48
4 cosh*(me) | (48)
where
1 1-p
B = ([v/s11533 + s13), — [V/s11533 +S13]1)/\/ Hy\ H3; (50)
H11 = |:2]’l/1%\/S11533:|1 + |:2n/1%\/S11S33:|2 (51)
and
H33 = [2”17%\/S11S33:|1 + [27’1/17%\/6‘]15‘33]2 (52)

Here f is the generalization of one of Dundurs’ (1969) parameters for isotropic materials and ¢ is the
biomaterial constant. The subscripts “1”” and “2”” used outside the square brackets in the above expressions
refer to the materials of top and bottom plates, respectively. The non-dimensional parameters 4 and » are
given by:

S11 1
A=— =4/=(1 53
B n=y504) (53)
where
12
p== S13 + 833 (54)
2 /susx
s;; are the material compliance coefficients and defined in the conventional fashion.
By comparing Eqs. (47) and (48), the magnitude of complex stress intensity factor is obtained as:
2
IK|* = % (01N, + 0003, (55)
where
2 cosh(me)
p=—F 56
im (56)

Based on the dimensional consideration and linearity, the complex stress intensity factor K can be written in
the form

— L —ie
K = (ay/500u + b1, T (57)
where a and b are the dimensionless complex numbers which only depend on the geometric parameters and
Dundurs’s parameters.

Substituting Eq. (57) into Eq. (55) and comparing corresponding terms give

aa=1, bb=1, ab+ab=0 (58)
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Let

a=e" (59)
then:

b = ie" (60)
and Eq. (57) can be re-written as:

K = Kgh; e (61)
where, @ is an unknown parameter and needs to be determined; and

Ko = % (@Qﬂ, +i 5”NM) = |Kgleto (62)

Obviously, K is the complex stress intensity factor based on the global SERR partition of Egs. (45) and
(46); Y is the loading phase angle of global decomposition and given as:

Y = arctan ( ggj) = arctan (\/z—l?) (63)

Suo and Hutchinson (1990) obtained a mode mix parameter w, which is defined differently, by solving an
integral equation. Davidson et al. (1995) used the finite element analysis to obtain the mode mix parameter
2 and provided an equation to relate w and Q. To make use of their solution, we revisit Eq. (47) and rewrite
Eq. (59) as:

2
K|* = % (CwN? + CyuM? + CoQ® + CywMN + CyoNQ + CyoMQ) (64)
Following the similar procedure described above, we can write the stress intensity factor K as:
K=K +iK, = ( CyN — i€ \/CyM — ie"? | /CQQ) \%h;iﬁeiw (65)

where w is defined in the same way as in Suo and Hutchinson (1990) and

. C . C
sin(y;) = 2\/%; sin(y,) = Z\/?NQ—C (66)
vCo

By comparing Eqgs. (61) and (65), we obtain:

w1:w+y2—g (67)
It is convenient to use the combination KA¥ as suggested by Rice (1988) and define:

KhY = [K|e¥ = Ki + iKy = Kge'”' = |Kgle!@ o) (68)
Then the individual stress intensity factors are given by:

Ki = |Kg|cos(Yg + o) = %( NNy cos(@1) — 1/300s sin(wl)) (69)

Kir = Kl sin( + 1) = 75 (V/ouNesin(on) + /500 cos(n) ) (70)
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The phase angle y defined in Eq. (68) is given by:

1 [ VONNeesin(@1) + /090 cos(wy)

_ _ 1

V=Yo+ o =tan (\/ENXC cos(w;) — /09Oy sin(w) 70

or in the fashion of Suo and Hutchinson (1990) as:
K = \% <\/C>NN cos(w) + /CyuM sin(w + 7,) + V/CoOsin(w + yz)) (72)
Ky = \% ( CyN sin(w) — /CyM cos(w + 7;) — 1/CoQcos(w + y2)> (73)
J = tan"! VCyN sin(w) — /CyM cos(w + ;) — /CoQcos(w + 7,) (74)

VCyN cos(w) 4+ /CyM sin(w + 7,) + /CoQsin(w + 7,)

Recalling Eq. (47), the associated mode I and II SERRs are defined following the procedures in Davidson
et al. (1995) as

1 . . 2

G| = 3 ( CyN cos(®) + / CyM sin(w + y,) + /CoQOsin(w + y2)> (75)
1 . 2

G = 3 ( CyN sin(w) — v/ CyM cos(w + 9;) — 1/ CpQ cos(w + y2)> (76)

It is important to see that Egs. (72) and (73) can be reduced to the expressions given in Sheinman and
Kardomateas (1997) if the transverse shear force Q is neglected. This indicates that the present solution is a
modification and an improvement of results from the classical beam/plate theory and accounts for the
transverse shear deformation in the closed-form solution. These expressions (Egs. (75) and (76)) are not
available in the literature to the authors’ best knowledge.

3.3. Relationship between local and global decompositions

As shown in the previous section, the global and local approaches reach different results since the dif-
ferent displacement fields are used. It appears that there is an angle shift w; between the local and global
mode decompositions (see Egs. (61) and (62)). In the global approach, the displacement field near the crack
tip is described by the first-order shear deformable plate; while the actual displacement field near the crack
tip is complicated and oscillatory. Therefore, the mode decomposition by the global approach is an
approximate solution and should be used with cautions in practice. A better global decomposition can be
achieved by using more complicated displacement fields, such as the refined plate model based on sub-
laminate concept proposed by Zou et al. (2001). However, the displacement field at the tip of an interface
crack, which is inherently oscillatory, cannot be captured by the plate-type model due to its assumption
used (e.g., Egs. (1) and (3) in this study).

Despite its strong inaccuracies, the global mode decomposition is still widely used in the literature to
retrieve the fracture parameters due to its simplicity and convenience to use. By neglecting the transverse
shear terms in Egs. (45) and (46), a global decomposition proposed by Bruno and Greco (2001) was ob-
tained. Not surprisingly, they also reported a significant difference when comparing their solution with the
local method. Compared with other available global decompositions aforementioned, the present solutions
are advantageous in that it accounts for effect of transverse shear. The relationship between the global and
local decompositions given by Eq. (68) provides an excellent tool to evaluate the error in the available plate-
type models on mode decomposition. This error is reflected by a loading angle shift w; which represents
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both the geometry and material mismatches along the interface as shown in Eq. (67). According to Egs. (67)
and (68), the exactly same result of the local and global decompositions can be reached only when both the
bottom and top plates are the same in material properties and geometries (i.e., thickness). In such a case,
there is no stress oscillation along the interface, and both the local and global decompositions give the
SERR components as:

Glé<\/§CNN+ VCuM + JC_QQ> (77)

Gy = %CNNz (78)

It should be recognized that the loading angle shift @, in this study and the mode mix parameter Q2
defined by Davidson et al. (1995) are identical, and it can be achieved by requiring:

where I' and I are given as:

- 12 . C12
sin’ = sinl’ = 80
e e (80)

where the coefficients ¢, ¢,, ¢12, ¢1, ¢; and ¢y, are defined in Davidson et al. (1995). Comparing Eq. (A2) of
Davidson et al. (1995) and Eq. (47) of this study, we have

A . . 1
¢ = Cy, ¢y = Cy, Cip = ECMN (81)
Eq. (A4) in Davidson et al. (1995) gives:
h h? 1 h
c :CN_TICMN +ZICM, ¢ = Cy, CIZZECMN_?ICM (82)

Therefore:

s 2 22
‘2 C12 1 ‘12

~

sin(I' = I') =sinT'cosI' —cos I'sin I’ =

C12
——/1 —
VC1C CiC2  /C1C2 Ci1C

h GGGk ol —1G -
2 CN(C —%ICMN“F%CM) 2 CN511

On the other hand, we can rewrite k given in Appendix B as:

|CnCy — 1 C
k= A(ln : g)N (84)
511(}155 +h55)

Then Eq. (66) can be expressed as

Cvo (W +hh  |CvCu—§Ciw _h [CyCu — §Ciw
_ iy _
2V Co o foy (il +n) Vonhss +05) 2 Cyou

Therefore, Eq. (79) is verified by comparing Eq. (85) of this study with Eq. (82) of Davidson et al. (1995).

sin(y,) = (85)
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3.4. Numerical example

As a numerical example and verification of the present study, an asymmetric double cantilever beam
(ADCB) specimen is analyzed. The ADCB specimen (Xiao et al., 1993) was used to evaluate the fracture
toughness of polymer/polymer and polymer/non-polymer bi-material interfaces (Fig. 5). For the ADCB
specimen, the loading parameters N, M and QO can be easily determined as:

N=0, M=-Pa, Q=-P (86)

In the practical testing, the displacement control is often used in order to keep crack propagation stable. If
the classical beam model is used, the resulting SERR based on the crack tip element method (Davidson
et al., 1995) is obtained as:

3A’E\Eo k3

_ 87
8a*(Ei3 + Eo13) (87)
The loading phase angle is given as:
J = tan! (M) (88)
sin(® + ;)

While by the present method where the effect of transverse shear deformation is included, the resulting
SERR is obtained as (Wang, 2003):

(400(1 + ka)? + 2058 o ) £

(m&+2n)°
2(h+ )+ (E+a)a—k(d+2)e
and the loading phase angle is calculated by:

V= — tan-! < Cuacos(w +p;) + /Cocos(w + Vz)) (90)

G =

(89)

Cyasin(w +7,) +/Cosin(w + 7,)

The SERR and loading phase angle obtained by the classical CTE method and the present method are
compared with the numerical solution of ADCB specimen by Xiao et al. (1993), of which the boundary
element method (BEM) was applied. By comparing with existing closed-form solution, the accuracy of
BEM predictions (within 3% difference) was examined by Xiao et al. (1993). In this study, the results by

A s

ADCB specimen

P”C %

Fig. 5. Asymmetric double cantilever beam specimen.

Crack Tip Element
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BEM are used as the baseline data and regarded as accurate ones. For simplicity, the material of the
specimen is chosen as homogeneous and isotropic.

The comparison of the SERR for an ADCB specimen between the present study which includes the effect
of the transverse shear deformation and CTE analysis (Davidson and Sundararaman, 1996) which was
primarily based on the classical beam theory is shown in Fig. 6. The SERR values in Fig. 6 are normalized
by the BEM analysis results. As observed in Fig. 6, a significant improvement in accuracy of evaluating
SERR is achieved by the present method. The CTE analysis ignores the transverse shear deformation and
therefore over-evaluates the stiffness of the specimen and the total SERR in term of displacement 4. The
differences of the phase angles yy of the ADCB specimen calculated by the CTE analysis and the present
study from the BEM are compared in Fig. 7. It is observed that compared to the CTE analysis, the phase
angle by the present study (Eq. (90)) is much closer to the BEM analysis data. The CTE seems to over-
estimate the phase angle of the mode mix (if the sign of the phase angle is ignored), although the difference
from the BEM analysis is not significant. It can be concluded that the shear deformation reduces the phase

18

— —h2/h1=1, Classic
—=& —h2/h1=2, Classic
—& —h2/h1=4, Classic
‘3\ —6 —h2/h1=8, Classic

% —e—h2/h1=1, Present

144 §§ 5 —&—h2/h1=2, Present
% —— h2/h1=4, Present

—e—h2/h1=8, Present

164

G/GBEM

D\
1.2 6\2;

0.8 T T T T T T T

=
w
g e
T -3 e, — e 5
> —— ahl= 5,Present
AN — -ah1=5CTE
-4 AN —=—alh2= 8,Present
N —= —ahl=8CTE
—
——

—_—

Fig. 7. Comparisons of load phase angle.
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angle a little bit and the accuracy of the phase angle provided by the present study Eq. (90) is enhanced
when compared to the CTE analysis.

As a matter of fact, the classical plate theory-based approach for interface fracture analysis is not
appropriate when the slenderness ratio is small since the shear deformation effect is more pronounced in the
specimen with moderate thickness and should not be ignored. By considering the effect of shear defor-
mation, the present prediction of the SERR has improved the accuracy when compared to the conventional
approach based on the classical plate theory. It can further imply that the shear deformation effect is
significant in the interface fracture analysis, especially for the specimens with low transverse shear modulus
and moderate thickness.

4. Conclusions

By modeling the delaminated composite plate as two Mindlin—Reissner sub-laminates on either side of
the delamination plane, an explicit and more accurate solution of the SERR is obtained in this paper. The
formulated SERR has shown to be determined by only three independent loading parameters, N, Q.. and
N, and as a result, the SIF is retrieved simply with the aid of two supplementary continuum analyses under
arbitrary loading configurations. By simplifying the present 3-D solution to a plane strain delamination
problem, the improved close-formed solutions of concentrated forces at the crack tip are analytically
developed. The resulting SERRs and SIFs in the 2-D plane strain condition are reduced to the available
classical plate theory-based solutions if the transverse shear is neglected. The relationship between the
global and local mode mix decompositions is established, and the derived expressions of SERRs are for the
first time available in the literature to “explicitly” include the effect of transverse shear in interface fracture
analysis. A close agreement of the present solutions with the available numerical data of boundary element
method indicates the accuracy and improvement of proposed approach compared to the classical plate
theory-based model. In summary, the explicit and close-formed solutions of the SERR, SIF and their
corresponding global and local mode decompositions with consideration of transverse shear deformation
are developed, and more accurate predictions are achieved, especially when the delaminated composite
plates have a relatively low transverse shear modulus or moderate thickness.
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Appendix A. The coefficients R; and Q; in Eqs. (27) and (28)

h h hi +h hy(hy +h

R = af) = S0l 4] + 2o} + Ry o R g (1)
2 2 2 4
h h hi+h hy(hy + h

Rio—all = 2b0 a4 22p 4 M ey el b he) o (A2)
2 2 2 4
h h hi +h hy(hy +h

Rig =l ) ol 1 12p Ty el th) o (A3)

hy + hy b2 4 ha(hy + hy)

2
2 26 4 dé()) (A4)

h hy
Raomal) -0 a2 1200 ¢
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hy hl + hy hy(hy + hy)

Res = aee - %b% +a 66 )+ 3 b66 3 bézs) + 4 dé? (A.5)
On _bll _hz_]dll +b11 +hzzd11 (A.6)
On = blz — h2—1d12 + b12 —|—h22d12 (A7)
Q16 = big — %d}? +5 + %df? (A.8)
Qs = bl — 7d26 +b% + hzz dy; (A9)
Oss = bélﬁ) - %dw + b66 + hzz d66 (A.10)

h h h
Riro = (aﬁ) + 2217521)) (Nxto + Naxo) + (a%) + 2217(122)> (Ny10 + Ny2o) + <a(126) + 22b§26)> (Niyto + Nuy2o)

h hy+h h h+h
+ (bll + sz“ > ( 10 + Moo + 1 : 2Nx10> + (b12 + 22d12 ) ( 10 + Moo + 1 . 2Ny10)
h+h
+ <b§26 + = d16 > ( xy10 +Mhy20 + ! P 2]v)cy10> (All)

h hy hy
Rero = <a16 + 22b16>( 0 + Nao) + <a26 +5 3 b26>( 1o + Nyao) + (%6 +5 3 b66>( w10 + Nyo)
+

h h h h h h
(b<12> zdé)) (Mxlo + My + — —; 2Nx10> + (bé? + 2d26 ) ( 10 + My + s 2Nv10)

2 2

h+h
+ <b226> + d66 > ( xy10 +M’Cy20 + ! 2 2nyl()> (AIZ)

h hy h h
Rir = <a11 +5 5 b11> wr + ("12 +5 B b12>( Nyio + Nyxo) + ("16 +5 B blé) ot T+ (bll + 22d11>

h hi+h h
+ (bgzz) +72d1(§)>< 10 + My + 1 > 2Ny10> + (bgze + zzdlé) T (A.13)

h hy h
Rer = (am + 5 B b16) xr + <azs + 5 B b26>( v10 JrNyZO) + <%6 + 5 B b66> or + < 16 T d16>
(

h hi +h h
+ (bé? + 5 dsg )( 10+ My + = 2Ny10) + (bé? - ;d%) o7 A14)

Appendix B. Crack tip forces in 2-D crack tip element

According to Reissner—-Mindlin plate theory, the plane strain deformations of a two-plate system are
given as:
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Ui(x,y) = ui(x) + yep;(x)

Wi(x,y) = wi(x)

where the subscript i = 1 or 2 represents the plate 1 or 2 of Fig. 1, respectively.
The strains in these two plates are given as:

o du; do, dw;

8i_dxa Ki:dxa /Y}Z_¢+a

The constitutive equation of laminate is written in the conventional way as:

(M) '3 B“)(%) <¢+dw,>

i i i d¢; |’

M, RIS

du; (i) (i)

r aj bll)(]vi> &, dw; (i)
= ; k +——h 0;

d¢; i) i) ] 55%1

<E> (bgl dl(l M;

At the interface of the two-plate system, the displacement continuity requires:

h h
—?1¢1 =u +32¢2

I
/N
S

or

W = Wy

Differentiating Eq. (B.6) once and substituting the first equation in Eq. (B.5) yields:

h h
e+ 00— (B0 ) = a0 2 (150 + )

Considering the global equilibrium conditions in Fig. 8, we have
Ny + Ny = Ny + Ny = Nr

O +0,=0r

2 Orx =My

hy+h hy+h
M1+M2+N1122 1

= My + My + Ny 3

Substituting Egs. (B.9) and (B.10) into Eq. (B.8) gives:

RNy + Q1M = byNr + by My

b= \\\\\\\\% 0y

N> (i
ity S

02

<

Fig. 8. Overall equilibrium of a two-plate system (plane-strain condition).

(B.3)

(B.5)

(B.9)

(B.10)

(B.11)

(B.12)
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where
R —alh 4 @ by +h2b§21) L + 1) A )
11 ll ]1 2 2 2 4 7
sy oy} hyb? hod®
n=by + 0 - TS T by =g+ by = b+

Differentiating Eq. (B.7) twice and considering Eq. (B.5) yields:

B3 % - % = h dd% ddq:: (B.13)

Substituting Egs. (B.5) and (B.10) into Eq. (B.6), we obtain:

d
(9 +n¥) 2 & _ (N +ainn) = (BN, + dffars) (B.14)
Considering the equilibrium condition of the plate 1, we have
dMm;  hy dN,
O ="+ o (B.15)

Combining Eq. (B.14) with Egs. (B.9) and (B.11) results in:

d*M,  h &N,
(1 + 12 (St + 5

hy + hy)d!
- <b§‘l> +b 4+ (12)>N1 (df}) + d{?)Ml — bNy — d My (B.16)

2

By eliminating M; from Eq. (B.12), Eq. (B.16) becomes:

R d*N
o) (- 2

h h d<2) d(l) d(z) R
= <b§11)+b§21)+( 1+22) 11 Jr( 1 JFQU) 1w,
11

b b
- (d}? +dﬁ>) (Ri Nr— QKMT) — bINy — dP M (B.17)

Solving Eq. (B.17) gives the axial force of plate 1 as:

N1 :ce_k"Jerc (Blg)
where
1 2 (hy+h )d()
o B b B - () + i)
1 2
(s + ) (— B2 +%)
1 2 2 2
N (d1<1) +d1(1>)(R11N _E) _b(ll)NT _dn)MT
Ic =

(2) (1, 42
(1) (m+h)d  (d))+d)) )Rt
bll +b11 + 2 - on
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Recalling Egs. (B.12) and (B.15), M, and Q; can be obtained as:

M1 = —&ce_k"—i—Mlc (B19)
O
Ry M e
_(Ru_ M B2
Q] <Q11 3 )cke +Q1C ( O)
where
Ry by by
Mic = = Nje + 22X Ny + 22y
1c On 1c oy VT M
~ dMic by ANy
Qe="90 "7 &

Two concentrated forces N,. and Q,. are presented in the SERR expressions (see Eqs. (42) and (43)).
Considering the equilibrium conditions at the crack tip (Fig. 9), we have

Nl() = _Nw_"Nl (0) (le)
h
My = ENXC + M, (0) (B.22)
Q10 = —0Ox + 01(0) (B.23)
Integral coefficients ¢ in Eq. (B.18) and two concentrated forces N,. and Q,. can be then obtained as:
(2M + hN)On
c=" /=0 B.24
mQOn — 2Ry (B.24)
2(QuM + R N)
Nee =—F———F75— B.25
mQOun — 2Ry (B-25)
hN
where

M = M, — M;(0), N = Nip — Ni(0), 0= 01— 0:(0) (B.27)

o) A Q.0

Ny \\ a, Ni(0)
2 AN Mi(0)
Nc I
Oc
A\
QOc
Oz %NC MaA0)
Nao
Ei N2(0)
e 0:(0)

Fig. 9. Equilibrium at the crack tip.
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