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Abstract

A first-order shear deformable plate theory-based method is developed to calculate the strain energy release rate

and stress intensity factor of a non-homogeneous delaminated composite plate under a general three-dimensional (3-

D) loading condition. By modeling the delaminated plate as two shear deformable sub-laminates on either side of the

delaminated plane, the strain energy release rate is expressed in terms of three concentrated forces at the crack tip

and their corresponding compliance coefficients. The simple expression of strain energy release rate makes the mode

decomposition under complicated loading situation possible with the aid of two supplementary continuum analyses.

To illustrate the present method, a plain strain delamination problem of laminates is examined, and the closed-form

expressions of strain energy release rate and stress intensity factor are obtained. It is found that the available

solutions, such as the ones based on the classical plate theory, can be recovered from the present solutions by simply

neglecting the transverse shear force. The relationship between the global and local decompositions is further

established, and the accuracy of the present solutions is examined by comparing with numerical results of boundary

element method. With inclusion of transverse shear deformation in the formulation, more accurate and explicit

predictions of the strain energy release rate and stress intensity factor of delaminated composite plate are achieved

by the present method, especially when a laminate has a relatively low transverse shear modulus or moderate

thickness.
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1. Introduction

Interlaminar delamination is one of most common failure modes in composites laminates. Fracture

mechanics principles have been widely employed to assess this type of failure mode, where the strain energy
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release rate (SERR) G or stress intensity factor (SIF) K is evaluated and compared with the critical mode-

mix-dependent SERR Gc or SIF Kc of the interface determined from experiments. The interface crack is

likely to propagate if G or K reaches Gc or Kc. This approach was adopted by Wang and Crossman (1980),

Wang (1982), O�Brien (1982, 1990), and Davidson et al. (2000a). By noting the mode mix dependence of Gc

and Kc, it is often necessary to extract the mode mix of G and K at the crack tip in order to successfully

predict the growth of crack.

Extensive studies have been conducted on predictions of both the SERR and SIF of elastic layered

structures (Suo and Hutchinson, 1990; Schapery and Davidson, 1990; Davidson et al., 1995; Sheinman

and Kardomateas, 1997). Finite elements have been frequently used to calculate the SIF (K) or SERR

(G) and mode mix of the interface crack for general conditions (Matos et al., 1989; Venkatesha et al.,

1996; Beuth, 1996; Sun and Qian, 1997; Qian and Sun, 1998; Nillsson et al., 2001). When the beam/plate-

type layered structures are encountered, however, the application of finite elements is not efficient since
the K-dominant zone is relatively small, and very fine mesh near the crack tip is required to obtain

sufficiently accurate results. In such a case, a more efficient alternative is to take the advantage of

lamination plate theory to calculate the SERR and obtain the SIF by solving supplemental continuum

problem. This method is remarkably simple, and therefore, computationally efficient, as proposed and

illustrated by Schapery and Davidson (1990) and Suo and Hutchinson (1990). In the classical works of

Schapery and Davidson (1990), Suo and Hutchinson (1990), and Davidson et al. (1995), the SERR of an

interface crack between two elastic layers was calculated by a classical beam or plate theory and ex-

pressed in terms of two independent loading parameters P and M (Suo and Hutchinson, 1990) or
concentrated force and moment at the crack tip (Schapery and Davidson, 1990); but the mode mix was

retrieved through an auxiliary continuum analysis. This method, commonly known as crack tip element

(CTE) analysis (Davidson et al., 1995), was successfully used in the interface fracture analysis in two-

dimensional (2-D) situation (Davidson and Sundararaman, 1996). However, the shear deformation in the

cracked and uncracked regions is not considered in the existing models since the classical beam or plate

theory was basically used. As a result, the SERR is always underestimated by this method (Davidson

and Sundararaman, 1996). This limitation is also demonstrated in the studies to extend the 2-D CTE to

3-D situation where the out-of-plane shear force is included (Hu, 1995; Yang et al., 2000). Davidson
et al. (2000b) found that the total and out-of-plane shear SERRs calculated by the classical plate theory

based 3-D CTE is erroneous. As a modification, they introduced shear deformation kinematics to cal-

culate plate forces and moments near the delamination tip and then substituted the resulting loading

parameters into the CTE model to calculate the SERR. By this way, the errors due to shear deformation

were reduced, and a good agreement with the predictions by 3-D finite element analysis was reached.

However, the inconsistence between the SERR predictions based on the shear deformable and classical

plate theory was introduced in their model. Sanker and co-workers (Sankar and Sonik, 1995; Park and

Sanker, 2002) took a similar approach to obtain the SERR; the first-order shear deformation theory was
used in their model, and the point-wise SERR was expressed in terms of jumps of three forces and two

moments across the delamination front. Although the transverse shear deformation was included in the

formulation, the expression of the SERR is relatively complicated, and it is difficult to retrieve the mode

mix.

In this study, we aim to establish a simple method to calculate the SERR and SIF of a delamination in

the shear deformable composite laminates. The formulation incorporates the shear deformation of lami-

nates and can be used to predict the delamination in the laminated composites. An explicit and more

accurate expression of the SERR is obtained first by using the first-order shear deformation laminate
theory. Then a method to decompose the mode mix of SIF is proposed. To illustrate the present method, a

plain strain delamination problem is studied, and a closed-form solution of the SERR and SIF is obtained.

The explicit solution obtained in this study is then compared with the available classical solutions in the

literature and with the numerical results of boundary element method.
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2. Strain energy release rate under general loading conditions

Consider a small piece at the delamination tip of Fig. 1, where a delamination s lies along the straight

interface of the top plate ‘‘1’’ and bottom plate ‘‘2’’ with thickness of h1 and h2, respectively. Generic loads
are applied, as already determined by a global beam or plate analysis.

In the conventional CTE analysis (Davidson et al., 1995; Yang et al., 2000), this problem is modeled as

three classical plates: the top plate in the cracked region, the bottom plate in the cracked region, and a

single plate of the whole uncracked region. As shown in Bruno and Greco (2001), it is not appropriate to

model the undelaminated portion of the laminate using a single plate element in which the actual shear

deformation could not be captured. Therefore, in this study, the uncracked region is modeled as two plates

as the ones in the cracked region: top plate ‘‘1’’ and bottom plate ‘‘2’’, instead of only one single plate.

These two plates are perfectly bonded along their interface to keep the continuity of displacement; while the
two plates in cracked region deform separately. The first-order shear deformation theory or Reissner–

Mindlin plate theory is used in this study to account for the shear deformation, and the top and bottom

plates can be in laminate configuration (i.e., sub-laminates 1 and 2, respectively).

2.1. First-order shear deformation theory of laminate plate

According to Reissner–Mindlin plate theory, the deformations of a two-plate system are given as:
Fig. 1
Uiðx; y; zÞ ¼ uiðx; yÞ þ z/xiðx; yÞ ð1Þ

Viðx; y; zÞ ¼ viðx; yÞ þ z/yiðx; yÞ ð2Þ

Wiðx; y; zÞ ¼ wiðx; yÞ ð3Þ

where the subscript i ¼ 1 or 2, represents the plate 1 or 2 in Fig. 1, respectively.

The strains in these two plates are given as:
exxi ¼ e0xxi þ zjxi; e0xxi ¼
oui
ox

; jxi ¼
o/xi

ox

eyyi ¼ e0yyi þ zjyi; e0yyi ¼
ovi
oy

; jyi ¼
o/yi

oy

cxyi ¼ c0xyi þ zjxyi; c0xyi ¼
ovi
ox

þ oui
oy

; jxyi ¼
o/yi

ox
þ o/xi

oy

cxzi ¼ c0xzi ¼ /xi þ
owi

ox
; cyzi ¼ c0yzi ¼ /yi þ

owi

oy

ð4Þ
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. Delamination in composite laminate. (a) A laminated plate under general loadings and (b) element at the delamination tip.
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The constitutive equation of a laminated plate is written in the conventional way (Barbero, 1998) as:
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The global equilibrium conditions are simply given as (see Figs. 1(b) and 2):
Nx10 þ Nx20 ¼ Nx1 þ Nx2 ¼ NxT ; Ny10 þ Ny20 ¼ Ny1 þ Ny2 ¼ NyT ð7Þ

Qx10 þ Qx20 ¼ Qx1 þ Qx2 ¼ QxT ; Qy10 þ Qy20 ¼ Qy1 þ Qy2 ¼ QyT ð8Þ

Mx10 þMx20 þ Nx10
h1 þ h2

2
þ QxT x ¼ Mx1 þMx2 þ Nx1

h1 þ h2
2

¼ MxT ð9Þ

Mxy10 þMxy20 þ Nxy10
h1 þ h2

2
¼ Mxy1 þMxy2 þ Nxy1

h1 þ h2
2

¼ MxyT ð10Þ
It has been shown that three concentrated crack tip forces (i.e., Nxc, Qxc, and Nxyc) coexisting at the crack
tip (Chatterjee and Ramnath, 1988) are resulted from the stress singularity at the delaminating tip (Fig. 2).

Then the equilibrium equations at the crack tip can be written as:
Nx10 ¼ �Nxc þ Nx1jx¼0 ð11Þ

Nxy10 ¼ �Nxyc þ Nxy1jx¼0 ð12Þ

Qx10 ¼ �Qxc þ Qx1jx¼0 ð13Þ

Mx10 ¼
h1
2
Nxc þMx1jx¼0 ð14Þ
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Fig. 2. Stresses and forces at crack tip.
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Mxy10 ¼
h1
2
Nxyc þMxy1jx¼0 ð15Þ
while Nyi, Myi and Qyi are continuous at the crack tip (Sankar and Sonik, 1995).
As a result, the deformations at the crack tip are continuous; however, their gradients are not conti-

nuous.

2.2. Determination of SERRs

According to Irwin method (Fig. 3), the strain energy release rates (SERRs) at the crack tip can be

computed as:
GI ¼ lim
D!0

1

2D

Z D

0

rzðxÞdwðD� xÞdx ¼ lim
D!0

1

2D
rzðfÞðdwð0Þ � dw0ð0ÞfÞD ð16Þ

GII ¼ lim
D!0

1

2D

Z D

0

sxðxÞduðD� xÞdx ¼ lim
D!0

1

2D
sxðfÞðduð0Þ � du0ð0ÞfÞD ð17Þ
x

y

z

∆∆

δ w δ u
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Fig. 3. Calculation of the strain energy release rate by Irwin method.



2762 J. Wang, P. Qiao / International Journal of Solids and Structures 41 (2004) 2757–2779
GIII ¼ lim
D!0

1

2D

Z D

0

sxyðxÞdvðD� xÞdx ¼ lim
D!0

1

2D
sxyðfÞðdvð0Þ � dv0ð0ÞfÞD ð18Þ
where D is a virtual crack propagation length; rxðxÞ, sxðxÞ and sxyðxÞ are the surface tractions; x and f are the
distances from the crack edge (Fig. 3); and 0 < f < D. Be aware that:
duð0Þ ¼ 0; dvð0Þ ¼ 0; dwð0Þ ¼ 0
Eqs. (16)–(18) can be rewritten as:
GI ¼
1

2
Qxc

oðw1 � w2Þ
ox

����
x¼0�

ð19Þ

GII ¼
1

2
Nxc

o u1 � h1
2
/x1 � u2 � h2

2
/x2

� �
ox

�����
x¼0�

ð20Þ

GIII ¼
1

2
Nxyc

o v1 � h1
2
/y1 � v2 � h2

2
/y2

� �
ox

�����
x¼0�

ð21Þ
At the uncracked part of the laminate (xP 0), the displacement continuity along the interface of two sub-

laminates requires:
u1 �
h1
2
/x1 ¼ u2 þ

h2
2
/x2 ð22Þ

v1 �
h1
2
/y1 ¼ v2 þ

h2
2
/y2 ð23Þ

w1 ¼ w2 ð24Þ

Therefore,
o u1 � h1
2
/x1 � u2 � h2

2
/x2

� �
ox

�����
x¼0�

¼
o u1 � h1

2
/x1 � u2 � h2

2
/x2

� �
ox

�����
x¼0�

�
o u1 � h1

2
/x1 � u2 � h2

2
/x2

� �
ox

�����
x¼0þ

ð25Þ

o v1 � h1
2
/y1 � v2 � h2

2
/y2

� �
ox

�����
x¼0�

¼
o v1 � h1

2
/y1 � v2 � h2

2
/y2

� �
ox

�����
x¼0�

�
o v1 � h1

2
/y1 � v2 � h2

2
/y2

� �
ox

�����
x¼0þ

ð26Þ
Substituting the first equation in the constitutive law of Eq. (6) into Eqs. (25) and (26) and considering the

global equilibrium conditions Eqs. (7)–(10), Eqs. (25) and (26) become:
R11Nx10 þ R12Ny10 þ R16Nxy10 þ Q11Mx10 þ Q12My10 þ Q16Mxy10 þ R1T0

¼ �ðR11ðNx1 � Nx10Þ þ R12ðNy1 � Ny10Þ þ R16ðNxy1 � Nxy10Þ þ Q11ðMx1 �Mx10Þ þ Q12ðMy1 �My10Þ
þ Q16ðMxy1 �Mxy10Þ þ R1T Þjx¼0 ð27Þ
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R16Nx10 þ R26Ny10 þ R66Nxy10 þ Q16Mx10 þ Q26My10 þ Q66Mxy10 þ R6T0

¼ �ðR16ðNx1 � Nx10Þ þ R26ðNy1 � Ny10Þ þ R66ðNxy1 � Nxy10Þ þ Q16ðMx1 �Mx10Þ þ Q26ðMy1 �My10Þ
þ Q66ðMxy1 �Mxy10Þ þ R6T Þjx¼0 ð28Þ
where the coefficients Rij and Qij are given in Appendix A.
Recalling the global equilibrium conditions of Eqs. (7)–(10), we find that:
R1T0 ¼ R1T jx¼0; R6T0 ¼ R6T jx¼0 ð29Þ

Noting the crack tip equilibrium conditions of Eqs. (11)–(15), we have
GII ¼
1

2
Nxc

o u1 � h1
2
/x1 � u2 � h2

2
/x2

� �
ox

�����
x¼0�

¼ 1

2
Nxc R11

��
� h1

2
Q11

�
Nxc þ R16

�
� h1

2
Q16

�
Nxyc

�
¼ 1

2
ðd11N 2

xc þ d16NxcNxycÞ ð30Þ

GIII ¼
1

2
Nxyc

o v1 � h1
2
/y1 � v2 � h2

2
/y2

� �
ox

�����
x¼0�

¼ 1

2
Nxyc R16

��
� h1

2
Q16

�
Nxc þ R66

�
� h1

2
Q66

�
Nxyc

�
¼ 1

2
ðd16NxcNxyc þ d66N 2

xycÞ ð31Þ
where three compliance coefficients are given by:
d11 ¼ að1Þ11 þ að2Þ11 � bð1Þ11 h1 þ bð2Þ11 h2 þ
h21
4
dð1Þ
11 þ h22

4
dð2Þ
11 ð32Þ

d16 ¼ að1Þ16 þ að2Þ16 � bð1Þ16 h1 þ bð2Þ16 h2 þ
h21
4
dð1Þ
16 þ h22

4
dð2Þ
16 ð33Þ

d66 ¼ að1Þ66 þ að2Þ66 � bð1Þ66 h1 þ bð2Þ66 h2 þ
h21
4
dð1Þ
66 þ h22

4
dð2Þ
66 ð34Þ
According to the second equation in the constitutive law of Eq. (6), we have
oðw1 � w2Þ
ox

����
x¼0�

¼ �ð/x1 � /x2Þjx¼0� þ að1Þ45

�
þ að2Þ45

�
Qy10 þ að1Þ55

�
þ að2Þ55

�
Qx10 ð35Þ
Note that
ð/x1 � /x2Þjx¼0� ¼ ð/x1 � /x2Þjx¼0þ ¼ að1Þ45

�
þ að2Þ45

�
Qy1jx¼0 þ að1Þ55

�
þ að2Þ55

�
Qx1jx¼0 ð36Þ
Considering the continuity of Qy1 across the delamination tip and combining Eqs. (35) and (36) with

Eq. (13), we obtain:
GI ¼
1

2
dQQ2

xc ð37Þ
where dQ is the out-of-plane shear compliance coefficient of the two-plate system under in-plane open

loading:
dQ ¼ að1Þ55

�
þ að2Þ55

�
ð38Þ
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Similarly, the total SERR at the crack tip can be written as:
G ¼ 1

2
d11N 2

xc

�
þ 2d16NxcNxyc þ d66N 2

xyc þ dQQ2
xc

�
ð39Þ
Eq. (39) indicates that no matter how many loadings are involved, the SERR can be expressed in terms of

only three independent loading parameters Nxc, Qxc, and Nxyc. Sankar and Sonik (1995) made a similar effort

to express the SERR in terms of resultant force jumps at the crack tip where five forces (three concentrated

forces and two concentrated moments) were used. Therefore, their expression is more complicated and

makes the mode decomposition a very difficult task.

By computing the three concentrated crack tip forces Nxc,Qxc, and Nxyc, the SERR can be simply evaluated
as illustrated in Eq. (39). Revisiting Eqs. (27) and (28), we find that Nxc and Nxyc can be determined by:
Nxc

Nxyc

� �
¼

R11 � h1
2
Q11 R16 � h1

2
Q16

R16 � h1
2
Q16 R66 � h1

2
Q66

 !�1

�
R11Nx10 þ R12Ny10 þ R16Nxy10 þ Q11Mx10 þ Q12My10 þ Q16Mxy10

R16Nx10 þ R26Ny10 þ R66Nxy10 þ Q16Mx10 þ Q26My10 þ Q66Mxy10

� �
ð40Þ
while for determination of Qxc, further analysis is needed, i.e., by solving a double plate system. For a

simple 2-D problem, it can be analytically obtained as shown in Appendix B (see Eq. (B.26)).

2.3. Mode mix

It is a difficult but necessary task to extract mode mix of SERR in interface fracture mechanics due to its

mode-mix-dependence. Two approaches of mode decomposition are commonly employed in the literature:

the global approach based on the beam/plate theory and the local approach based on the local singular field

close to the crack tip. There are conflicting experimental evidences in which approach is better to describe

mixed mode fracture process. Tests on carbon/epoxy laminate composites showed that the global mode

decomposition is more appropriate (Charalambides et al., 1992; Kinloch et al., 1993). On the other hand,

the local approach was found to be well-adapted to analyze the bi-material interface fracture (Liechti and

Chai, 1991; Akisanya and Fleck, 1992). To predict the delamination growth in unidirectional and multi-
directional composites materials, Davidson et al. (2000a) found that the non-singular field (NSF) mode mix

decomposition had the best accuracy. The NSF mode decomposition was developed by Davidson et al.

(1997) based on the assumption that the parameters in plate theory could be best used to characterize mode

mix. This method decomposed the mode mix in the same fashion as the local decomposition, however, with

a different value of mode mix parameter X obtained by the experiments. In this study, both the global and

local approaches are considered and explored.

As aforementioned, three separated modes of the SERR are already written in Eqs. (30), (31) and (37),

and therefore, these three equations provide the partition method in a general 3-D case. It has been recently
shown by Wang (2003) that the SERR expressions in Eqs. (30), (31) and (37) are in a limit situation for a

cohesive fracture of two plates bonded by a ‘‘thin’’ layer of adhesive as the thickness of adhesive layer

approaches to infinitesimal. Therefore, this mode decomposition simulates the presence of a perceived thin

adhesive resin layer embedding in the laminas. This decomposition is called ‘‘global decomposition’’ in this

paper since only the plate theory is used and the local oscillatory stress and displacement fields are ignored

(Wang, 2003). However, this global method is different from the global mode mix decomposition method by

Williams (1988) and the non-smooth model by Point and Sacco (1996). Williams (1988) developed the global

decomposition based on classical beam theory and three simple assumptions, which were only reasonable for
the symmetric delamination. As a result, Williams�method provided roughly the approximate solutions (Suo

and Hutchinson, 1990; Davidson et al., 1995) and there was no obvious physical meaning of the method for
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asymmetric delamination. On the other hand, the non-smooth model of Point and Sacco (1996) considered

the fiber elongation along the interface, which was physically meaningful for asymmetric delamination;

however, the difficulty still existed due to the presence of three crack tip forces (peel force V , shear force H
and moment C in their notation) from the classical beam theory, and the concentrated moment C at the
crack tip could contribute to all the fracture modes. Therefore, the error could be introduced by their

assumption on the contribution of C to the fracture mode. While in the present method, there is no con-

centrated moment at the crack tip, which therefore makes the mode decomposition very straightforward.

Point and Sacco (1996) also proposed a regularized laminate model which presented the SERRs of mode I

and II as a function of interface property since a linear elastic interface model was used. Their approach was

improved by Bruno and Greco (2001), in which the transverse shear deformation was incorporated.

This study presents a closed-form solution of the limit situation when the interface layer is infinitesimal

in a 3-D extension. In the present global method, the first-order shear deformable plate kinematics is
employed, and the actual displacement at the crack tip is much more complicated. Therefore, the accuracy

of the present model depends on the accuracy of simulating delamination configuration by the plate model.

For most beam type fracture specimens, such as double cantilever beam (DCB), end-notched flexure

(ENF), and mixed mode bending (MMB) specimens, when the crack length is sufficiently long, this model

can provide excellent results. The accuracy can be further enhanced by a more refined plate theory or multi-

layer plate formulation (Zou et al., 2001).

The strain energy release rate can be related to the modulus of stress intensity factor (Yang et al., 2000)

as:
G ¼ 1

4

d22
cosh2 pe

K2
I

�
þ d11

�
� w2

21

d22

�
K2

II þ d33

�
� w2

32

d22

�
K2

III þ 2 d13

�
þ w21w32

d22

�
KIIKIII

	
ð41Þ
where d11, d22, d33, d13, w21 and w32 are the elements of bi-material matrix (Hwu, 1993). From linearity

consideration, the stress intensity factors can be determined by the crack tip force as:
KI

KII

KIII

0@ 1A ¼
k11 k12 k13
k21 k22 k23
k31 k32 k33

0@ 1A Qxc

Nxc

Nxyc

0@ 1A ð42Þ
where kij are the coefficients need to be determined. Substituting Eq. (42) into Eq. (41) and then comparing

with Eq. (40), six coefficients of kij in terms of the remaining three can be obtained. Finite element method is

generally used to determine the remaining coefficients (Davidson et al., 1995; Yang et al., 2000).
3. Application: modified 2-D crack tip element

As an application example of the present method, a plane strain delamination problem of Fig. 4 is
analyzed, in which the SERR and SIF have been expressed in terms of concentrated force Nc and moment

Mc at the crack tip (the same notation given in Davidson et al., 1995). Essentially the same results have also
Fig. 4. 2-D crack tip element.
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been given by Sheinman and Kardomateas (1997), but in the same style as in Suo and Hutchinson (1990).

Both of these two solutions are based on the classical plate theory, and therefore, the transverse shear

deformation is not accounted for. As shown in the study of Bruno and Greco (2001), the transverse shear

plays a significant role in the SERR and therefore is considered in this study (Fig. 4).

3.1. Strain energy release rate

The normal concentrated force at the crack tip in Eq. (40) can be simplified as:
Nxc ¼
2ðQ11M þ R11NÞ
h1Q11 � 2R11

ð43Þ
The transverse (peeling) concentrated force is solved (see Appendix B) as:
Qxc ¼ �Q� k M
�

þ h1N
2

�
ð44Þ
where M , N and Q are defined in Eq. (B.27). Therefore, the SERRs can be written in the individual mode of

global sense as:
GI ¼
1

2
d11N 2

xc ¼
ðQ11M þ R11NÞ2

h1Q11 � 2R11

ð45Þ

GII ¼
1

2
dQQ2

xc ¼
dQ
2

Q
�

þ k M
�

þ h1N
2

��2

ð46Þ
and,
G ¼ 1

2
d11N 2

xc þ
1

2
dQQ2

xc ¼
1

2
CNN 2
�

þ CQQ2 þ CMM2 þ CMNMN þ CNQNQþ CMQMQ
�

ð47Þ
where,
CN ¼ að1Þ11 þ að2Þ11 þ ðh1 þ h2Þbð2Þ11 þ ðh1 þ h2Þ2dð2Þ
11

4
; CQ ¼ hð1Þ55 þ hð2Þ55 ; CM ¼ dð1Þ

11 þ dð2Þ
11

CMN ¼ 2 bð1Þ11

�
þ bð2Þ11

�
þ ðh1 þ h2Þdð2Þ

11 ; CNQ ¼ hð1Þ55

�
þ hð2Þ55

�
kh1; CMQ ¼ 2 hð1Þ55

�
þ hð2Þ55

�
k

The expression of SERR in Eq. (47) is the same as the one obtained by Schapery and Davidson (1990)

and Sheinman and Kardomateas (1997), except that three new terms associated with Q, which indicate the
contribution of transverse shear to the total SERR, are introduced. In Eq. (47), CQQ2=2 is due to the

transverse shear deformation in the cracked region; while CNQNQ=2 and CMQMQ=2 arise from the transverse

shear deformation in the uncracked region. The closed-form solutions obtained by Bruno and Greco (2001)

for geometrically symmetric plates can be easily derived using the present formula of Eq. (47) by substi-

tuting the specific loading and laminate properties.

3.2. Mode decomposition and stress intensity factor

The global decomposition of mode mix is given in Eqs. (45) and (46). In this section, the local

decomposition of fracture mode is studied. Following the same approach as in Sheinman and Kardomateas

(1997), the top and bottom sub-laminates are replaced by equivalent orthotropic plates with their principle
material axes aligned with the reference coordinate axes.
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The strain energy release rate can be related to the modulus of stress intensity factor (Suo, 1990) as:
G ¼ H11

4 cosh2ðpeÞ
jKj2 ð48Þ
where
e ¼ 1

2p
ln

1� b
1þ b

� �
ð49Þ

b ¼ ffiffiffiffiffiffiffiffiffiffiffi
s11s33

p½
�

þ s13�2 �
ffiffiffiffiffiffiffiffiffiffiffi
s11s33

p½ þ s13�1
�� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

H11H33

p
ð50Þ

H11 ¼ 2nk
1
4
ffiffiffiffiffiffiffiffiffiffiffi
s11s33

ph i
1
þ 2nk

1
4
ffiffiffiffiffiffiffiffiffiffiffi
s11s33

ph i
2

ð51Þ
and
H33 ¼ 2nk�
1
4
ffiffiffiffiffiffiffiffiffiffiffi
s11s33

ph i
1
þ 2nk�

1
4
ffiffiffiffiffiffiffiffiffiffiffi
s11s33

ph i
2

ð52Þ
Here b is the generalization of one of Dundurs� (1969) parameters for isotropic materials and e is the

biomaterial constant. The subscripts ‘‘1’’ and ‘‘2’’ used outside the square brackets in the above expressions

refer to the materials of top and bottom plates, respectively. The non-dimensional parameters k and n are
given by:
k ¼ s11
s33

; n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
ð1þ qÞ

r
ð53Þ
where
q ¼ 1

2

2s13 þ s33ffiffiffiffiffiffiffiffiffiffiffi
s11s33

p ð54Þ
sij are the material compliance coefficients and defined in the conventional fashion.

By comparing Eqs. (47) and (48), the magnitude of complex stress intensity factor is obtained as:
jKj2 ¼ p2

2
d11N 2

xc

�
þ dQQ2

xc

�
ð55Þ
where
p ¼ 2 coshðpeÞffiffiffiffiffiffiffi
H11

p ð56Þ
Based on the dimensional consideration and linearity, the complex stress intensity factor K can be written in

the form
K ¼ a
ffiffiffiffiffi
dQ

p
Qxc

�
þ b

ffiffiffiffiffiffi
d11

p
Nxc

� pffiffiffi
2

p h�ie
1 ð57Þ
where a and b are the dimensionless complex numbers which only depend on the geometric parameters and
Dundurs�s parameters.

Substituting Eq. (57) into Eq. (55) and comparing corresponding terms give
a�a ¼ 1; b�b ¼ 1; a�bþ �ab ¼ 0 ð58Þ
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Let
a ¼ eix1 ð59Þ
then:
b ¼ ieix1 ð60Þ
and Eq. (57) can be re-written as:
K ¼ KGh�ie
1 eix1 ð61Þ
where, x1 is an unknown parameter and needs to be determined; and
KG ¼ pffiffiffi
2

p
ffiffiffiffiffi
dQ

p
Qxc

�
þ i

ffiffiffiffiffiffi
d11

p
Nxc

�
¼ jKGjeiwG ð62Þ
Obviously, KG is the complex stress intensity factor based on the global SERR partition of Eqs. (45) and

(46); wG is the loading phase angle of global decomposition and given as:
wG ¼ arctan

ffiffiffiffiffiffi
d11

p
Nxcffiffiffiffiffi

dQ
p

Qxc

 !
¼ arctan

ffiffiffiffiffiffiffi
GII

GI

r� �
ð63Þ
Suo and Hutchinson (1990) obtained a mode mix parameter x, which is defined differently, by solving an

integral equation. Davidson et al. (1995) used the finite element analysis to obtain the mode mix parameter

X and provided an equation to relate x and X. To make use of their solution, we revisit Eq. (47) and rewrite

Eq. (55) as:
jKj2 ¼ p2

2
CNN 2
�

þ CMM2 þ CQQ2 þ CMNMN þ CNQNQþ CMQMQ
�

ð64Þ
Following the similar procedure described above, we can write the stress intensity factor K as:
K ¼ K1 þ iK2 ¼
ffiffiffiffiffiffi
CN

p
N

�
� ieic1

ffiffiffiffiffiffiffi
CM

p
M � ieic2

ffiffiffiffiffiffi
CQ

p
Q
� pffiffiffi

2
p h�ie

1 eix ð65Þ
where x is defined in the same way as in Suo and Hutchinson (1990) and
sinðc1Þ ¼
CMN

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
CMCN

p ; sinðc2Þ ¼
CNQ

2
ffiffiffiffiffiffiffiffiffiffiffiffi
CNCQ

p ð66Þ
By comparing Eqs. (61) and (65), we obtain:
x1 ¼ xþ c2 �
p
2

ð67Þ
It is convenient to use the combination Khie1 as suggested by Rice (1988) and define:
Khie1 ¼ jKjeiw ¼ KI þ iKII ¼ KGe
ix1 ¼ jKGjeiðx1þwGÞ ð68Þ
Then the individual stress intensity factors are given by:
KI ¼ jKGj cosðwG þ x1Þ ¼
pffiffiffi
2

p
ffiffiffiffiffiffi
dN

p
Nxc cosðx1Þ

�
�

ffiffiffiffiffi
dQ

p
Qxc sinðx1Þ

�
ð69Þ

KII ¼ jKGj sinðwG þ x1Þ ¼
pffiffiffi
2

p
ffiffiffiffiffiffi
dN

p
Nxc sinðx1Þ

�
þ

ffiffiffiffiffi
dQ

p
Qxc cosðx1Þ

�
ð70Þ
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The phase angle w defined in Eq. (68) is given by:
w ¼ wG þ x1 ¼ tan�1

ffiffiffiffiffiffi
dN

p
Nxc sinðx1Þ þ

ffiffiffiffiffi
dQ

p
Qxc cosðx1Þffiffiffiffiffiffi

dN
p

Nxc cosðx1Þ �
ffiffiffiffiffi
dQ

p
Qxc sinðx1Þ

 !
ð71Þ
or in the fashion of Suo and Hutchinson (1990) as:
KI ¼
pffiffiffi
2

p
ffiffiffiffiffiffi
CN

p
N cosðxÞ

�
þ

ffiffiffiffiffiffiffi
CM

p
M sinðxþ c1Þ þ

ffiffiffiffiffiffi
CQ

p
Q sinðxþ c2Þ

�
ð72Þ

KII ¼
pffiffiffi
2

p
ffiffiffiffiffiffi
CN

p
N sinðxÞ

�
�

ffiffiffiffiffiffiffi
CM

p
M cosðxþ c1Þ �

ffiffiffiffiffiffi
CQ

p
Q cosðxþ c2Þ

�
ð73Þ

w ¼ tan�1

ffiffiffiffiffiffi
CN

p
N sinðxÞ �

ffiffiffiffiffiffiffi
CM

p
M cosðxþ c1Þ �

ffiffiffiffiffiffi
CQ

p
Q cosðxþ c2Þffiffiffiffiffiffi

CN
p

N cosðxÞ þ
ffiffiffiffiffiffiffi
CM

p
M sinðxþ c1Þ þ

ffiffiffiffiffiffi
CQ

p
Q sinðxþ c2Þ

 !
ð74Þ
Recalling Eq. (47), the associated mode I and II SERRs are defined following the procedures in Davidson

et al. (1995) as
G�
I ¼

1

2

ffiffiffiffiffiffi
CN

p
N cosðxÞ

�
þ

ffiffiffiffiffiffiffi
CM

p
M sinðxþ c1Þ þ

ffiffiffiffiffiffi
CQ

p
Q sinðxþ c2Þ

�2
ð75Þ

G�
II ¼

1

2

ffiffiffiffiffiffi
CN

p
N sinðxÞ

�
�

ffiffiffiffiffiffiffi
CM

p
M cosðxþ c1Þ �

ffiffiffiffiffiffi
CQ

p
Q cosðxþ c2Þ

�2
ð76Þ
It is important to see that Eqs. (72) and (73) can be reduced to the expressions given in Sheinman and

Kardomateas (1997) if the transverse shear force Q is neglected. This indicates that the present solution is a

modification and an improvement of results from the classical beam/plate theory and accounts for the

transverse shear deformation in the closed-form solution. These expressions (Eqs. (75) and (76)) are not
available in the literature to the authors� best knowledge.

3.3. Relationship between local and global decompositions

As shown in the previous section, the global and local approaches reach different results since the dif-

ferent displacement fields are used. It appears that there is an angle shift x1 between the local and global

mode decompositions (see Eqs. (61) and (62)). In the global approach, the displacement field near the crack

tip is described by the first-order shear deformable plate; while the actual displacement field near the crack

tip is complicated and oscillatory. Therefore, the mode decomposition by the global approach is an

approximate solution and should be used with cautions in practice. A better global decomposition can be

achieved by using more complicated displacement fields, such as the refined plate model based on sub-

laminate concept proposed by Zou et al. (2001). However, the displacement field at the tip of an interface
crack, which is inherently oscillatory, cannot be captured by the plate-type model due to its assumption

used (e.g., Eqs. (1) and (3) in this study).

Despite its strong inaccuracies, the global mode decomposition is still widely used in the literature to

retrieve the fracture parameters due to its simplicity and convenience to use. By neglecting the transverse

shear terms in Eqs. (45) and (46), a global decomposition proposed by Bruno and Greco (2001) was ob-

tained. Not surprisingly, they also reported a significant difference when comparing their solution with the

local method. Compared with other available global decompositions aforementioned, the present solutions

are advantageous in that it accounts for effect of transverse shear. The relationship between the global and
local decompositions given by Eq. (68) provides an excellent tool to evaluate the error in the available plate-

type models on mode decomposition. This error is reflected by a loading angle shift x1 which represents
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both the geometry and material mismatches along the interface as shown in Eq. (67). According to Eqs. (67)

and (68), the exactly same result of the local and global decompositions can be reached only when both the

bottom and top plates are the same in material properties and geometries (i.e., thickness). In such a case,

there is no stress oscillation along the interface, and both the local and global decompositions give the
SERR components as:
GI ¼
1

2

ffiffiffiffiffiffiffiffiffiffi
3

7
CN

r
N

 
þ

ffiffiffiffiffiffiffi
CM

p
M þ

ffiffiffiffiffiffi
CQ

p
Q

!2

ð77Þ
GII ¼
2

7
CNN 2 ð78Þ
It should be recognized that the loading angle shift x1 in this study and the mode mix parameter X
defined by Davidson et al. (1995) are identical, and it can be achieved by requiring:
c2 ¼ bC � C ð79Þ
where bC and C are given as:
sin bC ¼ ĉ12ffiffiffiffiffiffiffiffi
ĉ1ĉ2

p ; sinC ¼ c12ffiffiffiffiffiffiffiffi
c1c2

p ð80Þ
where the coefficients ĉ1, ĉ2, ĉ12, c1, c2 and c12 are defined in Davidson et al. (1995). Comparing Eq. (A2) of

Davidson et al. (1995) and Eq. (47) of this study, we have
ĉ1 ¼ CN ; ĉ2 ¼ CM ; ĉ12 ¼
1

2
CMN ð81Þ
Eq. (A4) in Davidson et al. (1995) gives:
c1 ¼ CN � h1
2
CMN þ h21

4
CM ; c2 ¼ CM ; c12 ¼

1

2
CMN � h1

2
CM ð82Þ
Therefore:
sinðbC � CÞ ¼ sin bC cosC� cos bC sinC ¼ ĉ12ffiffiffiffiffiffiffiffi
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c212
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s
ð83Þ
On the other hand, we can rewrite k given in Appendix B as:
k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CNCM � 1

4
C2

MN

d11ðhð1Þ55 þ hð2Þ55 Þ

s
ð84Þ
Then Eq. (66) can be expressed as
sinðc2Þ ¼
CNQ

2
ffiffiffiffiffiffiffiffiffiffiffiffi
CNCQ

p ¼ ðhð1Þ55 þ hð2Þ55 Þh1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CN ðhð1Þ55 þ hð2Þ55 Þ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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4
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d11ðhð1Þ55 þ hð2Þ55 Þ
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2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CNCM � 1

4
C2
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CNd11

s
ð85Þ
Therefore, Eq. (79) is verified by comparing Eq. (85) of this study with Eq. (82) of Davidson et al. (1995).
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3.4. Numerical example

As a numerical example and verification of the present study, an asymmetric double cantilever beam

(ADCB) specimen is analyzed. The ADCB specimen (Xiao et al., 1993) was used to evaluate the fracture
toughness of polymer/polymer and polymer/non-polymer bi-material interfaces (Fig. 5). For the ADCB

specimen, the loading parameters N , M and Q can be easily determined as:
N ¼ 0; M ¼ �Pa; Q ¼ �P ð86Þ

In the practical testing, the displacement control is often used in order to keep crack propagation stable. If
the classical beam model is used, the resulting SERR based on the crack tip element method (Davidson

et al., 1995) is obtained as:
G ¼ 3D2E1E2h31h
3
2

8a4ðE1h31 þ E2h32Þ
ð87Þ
The loading phase angle is given as:
w ¼ � tan�1 cosðxþ c1Þ
sinðxþ c1Þ

� �
ð88Þ
While by the present method where the effect of transverse shear deformation is included, the resulting

SERR is obtained as (Wang, 2003):
G ¼
1
2
dQð1þ kaÞ2 þ 2dNn

2 a2

ðh1nþ2gÞ2

� �
D2

a3
3

1
D1
þ 1

D2

� �
þ 1

B1
þ 1

B2

� �
a� k 1

B1
þ 1

B2

� �
a2

ð89Þ
and the loading phase angle is calculated by:
w ¼ � tan�1

ffiffiffiffiffiffiffi
CM

p
a cosðxþ c1Þ þ

ffiffiffiffiffiffi
CQ

p
cosðxþ c2Þffiffiffiffiffiffiffi

CM
p

a sinðxþ c1Þ þ
ffiffiffiffiffiffi
CQ

p
sinðxþ c2Þ

 !
ð90Þ
The SERR and loading phase angle obtained by the classical CTE method and the present method are

compared with the numerical solution of ADCB specimen by Xiao et al. (1993), of which the boundary

element method (BEM) was applied. By comparing with existing closed-form solution, the accuracy of
BEM predictions (within 3% difference) was examined by Xiao et al. (1993). In this study, the results by
Fig. 5. Asymmetric double cantilever beam specimen.
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BEM are used as the baseline data and regarded as accurate ones. For simplicity, the material of the

specimen is chosen as homogeneous and isotropic.

The comparison of the SERR for an ADCB specimen between the present study which includes the effect

of the transverse shear deformation and CTE analysis (Davidson and Sundararaman, 1996) which was
primarily based on the classical beam theory is shown in Fig. 6. The SERR values in Fig. 6 are normalized

by the BEM analysis results. As observed in Fig. 6, a significant improvement in accuracy of evaluating

SERR is achieved by the present method. The CTE analysis ignores the transverse shear deformation and

therefore over-evaluates the stiffness of the specimen and the total SERR in term of displacement D. The
differences of the phase angles w of the ADCB specimen calculated by the CTE analysis and the present

study from the BEM are compared in Fig. 7. It is observed that compared to the CTE analysis, the phase

angle by the present study (Eq. (90)) is much closer to the BEM analysis data. The CTE seems to over-

estimate the phase angle of the mode mix (if the sign of the phase angle is ignored), although the difference
from the BEM analysis is not significant. It can be concluded that the shear deformation reduces the phase
0.8
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angle a little bit and the accuracy of the phase angle provided by the present study Eq. (90) is enhanced

when compared to the CTE analysis.

As a matter of fact, the classical plate theory-based approach for interface fracture analysis is not

appropriate when the slenderness ratio is small since the shear deformation effect is more pronounced in the
specimen with moderate thickness and should not be ignored. By considering the effect of shear defor-

mation, the present prediction of the SERR has improved the accuracy when compared to the conventional

approach based on the classical plate theory. It can further imply that the shear deformation effect is

significant in the interface fracture analysis, especially for the specimens with low transverse shear modulus

and moderate thickness.
4. Conclusions

By modeling the delaminated composite plate as two Mindlin–Reissner sub-laminates on either side of

the delamination plane, an explicit and more accurate solution of the SERR is obtained in this paper. The

formulated SERR has shown to be determined by only three independent loading parameters, Nxc, Qxc and

Nxyc and as a result, the SIF is retrieved simply with the aid of two supplementary continuum analyses under

arbitrary loading configurations. By simplifying the present 3-D solution to a plane strain delamination

problem, the improved close-formed solutions of concentrated forces at the crack tip are analytically

developed. The resulting SERRs and SIFs in the 2-D plane strain condition are reduced to the available
classical plate theory-based solutions if the transverse shear is neglected. The relationship between the

global and local mode mix decompositions is established, and the derived expressions of SERRs are for the

first time available in the literature to ‘‘explicitly’’ include the effect of transverse shear in interface fracture

analysis. A close agreement of the present solutions with the available numerical data of boundary element

method indicates the accuracy and improvement of proposed approach compared to the classical plate

theory-based model. In summary, the explicit and close-formed solutions of the SERR, SIF and their

corresponding global and local mode decompositions with consideration of transverse shear deformation

are developed, and more accurate predictions are achieved, especially when the delaminated composite
plates have a relatively low transverse shear modulus or moderate thickness.
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Appendix A. The coefficients Rij and Qij in Eqs. (27) and (28)
R11 ¼ að1Þ11 � h1
2
bð1Þ11 þ að2Þ11 þ h2

2
bð2Þ11 þ h1 þ h2

2
bð2Þ11 þ h2ðh1 þ h2Þ

4
dð2Þ
11 ðA:1Þ

R12 ¼ að1Þ12 � h1
2
bð1Þ12 þ að2Þ12 þ h2

2
bð2Þ12 þ h1 þ h2

2
bð2Þ12 þ h2ðh1 þ h2Þ

4
dð2Þ
12 ðA:2Þ

R16 ¼ að1Þ16 � h1
2
bð1Þ16 þ að2Þ16 þ h2

2
bð2Þ16 þ h1 þ h2

2
bð2Þ16 þ h2ðh1 þ h2Þ

4
dð2Þ
16 ðA:3Þ

R26 ¼ að1Þ26 � h1
2
bð1Þ26 þ að2Þ26 þ h2

2
bð2Þ26 þ h1 þ h2

2
bð2Þ26 þ h2ðh1 þ h2Þ

4
dð2Þ
26 ðA:4Þ
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R66 ¼ að1Þ66 � h1
2
bð1Þ66 þ að2Þ66 þ h2

2
bð2Þ66 þ h1 þ h2

2
bð2Þ66 þ h2ðh1 þ h2Þ

4
dð2Þ
66 ðA:5Þ

Q11 ¼ bð1Þ11 � h1
2
dð1Þ
11 þ bð2Þ11 þ h2

2
dð2Þ
11 ðA:6Þ

Q12 ¼ bð1Þ12 � h1
2
dð1Þ
12 þ bð2Þ12 þ h2

2
dð2Þ
12 ðA:7Þ

Q16 ¼ bð1Þ16 � h1
2
dð1Þ
16 þ bð2Þ16 þ h2

2
dð2Þ
16 ðA:8Þ

Q26 ¼ bð1Þ26 � h1
2
dð1Þ
26 þ bð2Þ26 þ h2

2
dð2Þ
26 ðA:9Þ

Q66 ¼ bð1Þ66 � h1
2
dð1Þ
66 þ bð2Þ66 þ h2

2
dð2Þ
66 ðA:10Þ

R1T0 ¼ að2Þ11

�
þ h2

2
bð2Þ11

�
ðNx10 þ Nx20Þ þ að2Þ12

�
þ h2

2
bð2Þ12

�
ðNy10 þ Ny20Þ þ að2Þ16

�
þ h2

2
bð2Þ16

�
ðNxy10 þ Nxy20Þ

þ bð2Þ11

�
þ h2

2
dð2Þ
11

�
Mx10

�
þMx20 þ

h1 þ h2
2

Nx10

�
þ bð2Þ12

�
þ h2

2
dð2Þ
12

�
My10

�
þMy20 þ

h1 þ h2
2

Ny10

�
þ bð2Þ16

�
þ h2

2
dð2Þ
16

�
Mxy10

�
þMxy20 þ

h1 þ h2
2

Nxy10

�
ðA:11Þ

R6T0 ¼ að2Þ16

�
þ h2

2
bð2Þ16

�
ðNx10 þ Nx20Þ þ að2Þ26

�
þ h2

2
bð2Þ26

�
ðNy10 þ Ny20Þ þ að2Þ66

�
þ h2

2
bð2Þ66

�
ðNxy10 þ Nxy20Þ

þ bð2Þ16

�
þ h2

2
dð2Þ
16

�
Mx10

�
þMx20 þ

h1 þ h2
2

Nx10

�
þ bð2Þ26

�
þ h2

2
dð2Þ
26

�
My10

�
þMy20 þ

h1 þ h2
2

Ny10

�
þ bð2Þ66

�
þ h2

2
dð2Þ
66

�
Mxy10

�
þMxy20 þ

h1 þ h2
2

Nxy10

�
ðA:12Þ

R1T ¼ að2Þ11

�
þ h2

2
bð2Þ11

�
NxT þ að2Þ12

�
þ h2

2
bð2Þ12

�
ðNy10 þ Ny20Þ þ að2Þ16

�
þ h2

2
bð2Þ16

�
NxyT þ bð2Þ11

�
þ h2

2
dð2Þ
11

�
MxT

þ bð2Þ12

�
þ h2

2
dð2Þ
12

�
My10

�
þMy20 þ

h1 þ h2
2

Ny10

�
þ bð2Þ16

�
þ h2

2
dð2Þ
16

�
MxyT ðA:13Þ

R6T ¼ að2Þ16

�
þ h2

2
bð2Þ16

�
NxT þ að2Þ26

�
þ h2

2
bð2Þ26

�
ðNy10 þ Ny20Þ þ að2Þ66

�
þ h2

2
bð2Þ66

�
NxyT þ bð2Þ16

�
þ h2

2
dð2Þ
16

�
MxT

þ bð2Þ26

�
þ h2

2
dð2Þ
26

�
My10

�
þMy20 þ

h1 þ h2
2

Ny10

�
þ bð2Þ66

�
þ h2

2
dð2Þ
66

�
MxyT ðA:14Þ
Appendix B. Crack tip forces in 2-D crack tip element

According to Reissner–Mindlin plate theory, the plane strain deformations of a two-plate system are

given as:
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Uiðx; yÞ ¼ uiðxÞ þ y/iðxÞ ðB:1Þ

Wiðx; yÞ ¼ wiðxÞ ðB:2Þ

where the subscript i ¼ 1 or 2 represents the plate 1 or 2 of Fig. 1, respectively.

The strains in these two plates are given as:
e0i ¼
dui
dx

; ji ¼
d/i

dx
; cxyi ¼ /i þ

dwi

dx
ðB:3Þ
The constitutive equation of laminate is written in the conventional way as:
Ni

Mi

� �
¼ AðiÞ

11 BðiÞ
11

BðiÞ
11 DðiÞ

11

 !
dui
dx
d/i
dx

 !
; Qi ¼ H ðiÞ

55 /i

�
þ dwi

dx

�
ðB:4Þ
or
dui
dx
d/i
dx

 !
¼ aðiÞ11 bðiÞ11

bðiÞ11 dðiÞ
11

 !
Ni

Mi

� �
; /i þ

dwi

dx
¼ hðiÞ55Qi ðB:5Þ
At the interface of the two-plate system, the displacement continuity requires:
u1 �
h1
2
/1 ¼ u2 þ

h2
2
/2 ðB:6Þ

w1 ¼ w2 ðB:7Þ

Differentiating Eq. (B.6) once and substituting the first equation in Eq. (B.5) yields:
að1Þ11 N1 þ bð1Þ11 M1 �
h1
2

bð1Þ11 N1

�
þ dð1Þ

11 M1

�
¼ að2Þ11 N2 þ bð2Þ11 M2 þ

h2
2

bð2Þ11 N2

�
þ dð2Þ

11 M2

�
ðB:8Þ
Considering the global equilibrium conditions in Fig. 8, we have
N1 þ N2 ¼ N10 þ N20 ¼ NT ðB:9Þ

Q1 þ Q2 ¼ QT ðB:10Þ

M1 þM2 þ N1

h1 þ h2
2

¼ M10 þM20 þ N10

h1 þ h2
2

þ QT x ¼ MT ðB:11Þ
Substituting Eqs. (B.9) and (B.10) into Eq. (B.8) gives:
R11N1 þ Q11M1 ¼ bNNT þ bMMT ðB:12Þ
Fig. 8. Overall equilibrium of a two-plate system (plane-strain condition).
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where
R11 ¼ að1Þ11 þ að2Þ11 � h1b
ð1Þ
11

2
þ h2b

ð2Þ
11

2
þ ðh1 þ h2Þbð2Þ11

2
þ h2ðh1 þ h2Þdð2Þ

11

4
;

Q11 ¼ bð1Þ11 þ bð2Þ11 � h1d
ð1Þ
11

2
þ h2d

ð2Þ
11

2
; bN ¼ að2Þ11 þ h2b

ð2Þ
11

2
; bM ¼ bð2Þ11 þ h2d

ð2Þ
11

2

Differentiating Eq. (B.7) twice and considering Eq. (B.5) yields:
hð1Þ55

dQ1

dx
� d/1

dx
¼ hð2Þ55

dQ2

dx
� d/2

dx
ðB:13Þ
Substituting Eqs. (B.5) and (B.10) into Eq. (B.6), we obtain:
hð1Þ55

�
þ hð2Þ55

� dQ1

dx
¼ bð1Þ11 N1

�
þ dð1Þ

11 M1

�
� bð2Þ11 N2

�
þ dð2Þ

11 M2

�
ðB:14Þ
Considering the equilibrium condition of the plate 1, we have
Q1 ¼
dM1

dx
þ h1

2

dN1

dx
ðB:15Þ
Combining Eq. (B.14) with Eqs. (B.9) and (B.11) results in:
hð1Þ55

�
þ hð2Þ55

� d2M1

dx2

�
þ h1

2

d2N1

dx2

�
¼ bð1Þ11

 
þ bð2Þ11 þ ðh1 þ h2Þdð2Þ

11

2

!
N1 þ dð1Þ

11

�
þ dð2Þ

11

�
M1 � bð2Þ11 NT � dð2Þ

11 MT ðB:16Þ
By eliminating M1 from Eq. (B.12), Eq. (B.16) becomes:
hð1Þ55

�
þ hð2Þ55

��
� R11

Q11

þ h1
2

�
d2N1

dx

¼ bð1Þ11

 
þ bð2Þ11 þ ðh1 þ h2Þdð2Þ

11

2
þ ðdð1Þ

11 þ dð2Þ
11 ÞR11

Q11

!
N1

� dð1Þ
11

�
þ dð2Þ

11

� bN
R11

NT

�
� bM
Q11

MT

�
� bð2Þ11 NT � dð2Þ

11 MT ðB:17Þ
Solving Eq. (B.17) gives the axial force of plate 1 as:
N1 ¼ ce�kx þ N1C ðB:18Þ
where
k2 ¼
bð1Þ11 þ bð2Þ11 þ ðh1þh2Þd

ð2Þ
11

2
� R11

Q11
ðdð1Þ

11 þ dð2Þ
11 Þ

ðhð1Þ55 þ hð2Þ55 Þ � R11

Q11
þ h1

2

� �

N1C ¼
ðdð1Þ

11 þ dð2Þ
11 Þ bN

R11
NT � bM

Q11

� �
� bð2Þ11 NT � dð2Þ

11 MT

bð1Þ11 þ bð2Þ11 þ ðh1þh2Þd
ð2Þ
11

2
� ðdð1Þ

11
þdð2Þ

11
ÞR11

Q11
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Recalling Eqs. (B.12) and (B.15), M1 and Q1 can be obtained as:
M1 ¼ � R11

Q11

ce�kx þM1C ðB:19Þ

Q1 ¼
R11

Q11

�
� h1

2

�
cke�kx þ Q1C ðB:20Þ
where
M1C ¼ � R11

Q11

N1C þ bN
Q11

NT þ
bM
Q11

MT

Q1C ¼ dM1C

dx
þ h1

2

dN1C

dx
Two concentrated forces Nxc and Qxc are presented in the SERR expressions (see Eqs. (42) and (43)).

Considering the equilibrium conditions at the crack tip (Fig. 9), we have
N10 ¼ �Nxc þ N1ð0Þ ðB:21Þ

M10 ¼
h1
2
Nxc þM1ð0Þ ðB:22Þ

Q10 ¼ �Qxc þ Q1ð0Þ ðB:23Þ

Integral coefficients c in Eq. (B.18) and two concentrated forces Nxc and Qxc can be then obtained as:
c ¼ ð2M þ h1NÞQ11

h1Q11 � 2R11

ðB:24Þ

Nxc ¼
2ðQ11M þ R11NÞ
h1Q11 � 2R11

ðB:25Þ

Qxc ¼ �Q� k M
�

þ h1N
2

�
ðB:26Þ
where
M ¼ M10 �M1ð0Þ; N ¼ N10 � N1ð0Þ; Q ¼ Q10 � Q1ð0Þ ðB:27Þ
Fig. 9. Equilibrium at the crack tip.
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